Exercise 1.6 (3)

3. Prove that each of the following statement pattern is a tautology.
i) (p ∧ q) → q
Ans:

p

q

p ∧ q

(p ∧ q) → q

T

T

T

T

T

F

F

T

F

T

F

T

F

F

F

T

All the truth value in the last column are T. Hence , it is tautology.


ii) (p → q) ↔ (∼ q → ∼ p)
Ans: 

p

q

∼ p

∼ q

p → q

∼ q → ∼ p

(p → q) ↔ (∼ q → ∼ p)

T

T

F

F

T

T

T

T

F

F

T

F

F

T

F

T

T

F

T

T

T

F

F

T

T

T

T

T

All the truth value in the last column are T. Hence , it is tautology.



iii) (∼ p ∧ ∼ q) → (p → q)
Ans: 

p

q

∼ p

∼ q

∼ p ∧ ∼ q

p → q

(∼ p ∧ ∼ q) → (p → q)

T

T

F

F

F

T

T

T

F

F

T

F

F

T

F

T

T

F

F

T

T

F

F

T

T

T

T

T

All the truth value in the last column are T. Hence , it is tautology.


iv) (∼ p ∨ ∼ q) ↔ ∼ (p ∧ q)
Ans:

p

q

∼ p

∼ q

∼ p ∨ ∼ q

p ∧ q

∼ (p ∧ q)

(∼ p ∨ ∼ q) ↔ ∼ (p ∧ q)

T

T

F

F

F

T

F

T

T

F

F

T

T

F

T

T

F

T

T

F

T

F

T

T

F

F

T

T

T

F

T

T

All the truth value in the last column are T. Hence , it is tautology.