Exercise 1.6 (7)

7. Prove that the following pairs of statement patterns are equivalent.
i) p ∨ (q ∧ r) and (p ∨ q) ∧ (p ∨ r)
Ans:

1

2

3

4

5

6

7

8

p

q

r

q ∧ r

p ∨ (q ∧ r)

(p ∨ q)

(p ∨ r)

(p ∨ q) ∧ (p ∨ r)

T

T

T

T

T

T

T

T

T

T

F

F

T

T

T

T

T

F

T

F

T

T

T

T

T

F

F

F

T

T

T

T

F

T

T

T

T

T

T

T

F

T

F

F

F

T

F

F

F

F

T

F

F

F

T

F

F

F

F

F

F

F

F

F

The entries in the Columns 5 and 8 are identical.
∴ p ∨ (q ∧ r) ≡ (p ∨ q) ∧ (p ∨ r)


ii) p ↔ q and (p → q) ∧ (q → p)
Ans:

1

2

3

4

5

6

p

q

p ↔ q

p → q

q → p

(p → q) ∧ (q → p)

T

T

T

T

T

T

T

F

F

F

T

F

F

T

F

T

F

F

F

F

T

T

T

T

In the above table, entries in columns 3 and 6 are identical. 
∴Statement p ↔ q and (p → q) ∧ (q → p) are equivalent.


iii) p → q and ∼ q → ∼ p and ∼ p ∨ q
Ans:

1

2

3

4

5

6

7

p

q

∼ p

∼ q

p → q

∼ q → ∼ p

∼ p ∨ q

T

T

F

F

T

T

T

T

F

F

T

F

F

F

F

T

T

F

T

T

T

F

F

T

T

T

T

T

In the above table, entries in columns 5, 6 and 7 are identical. 
∴Statement p → q and ∼ q → ∼ p and ∼ p ∨ q are equivalent.


iv) ∼ (p ∧ q) and ∼ p ∨ ∼ q.
Ans:

1

2

3

4

5

6

7

p

q

~p

~q

(p ∧ q)

∼ (p ∧ q)

∼ p ∨ ∼ q

T

T

F

F

T

F

F

T

F

F

T

F

T

T

F

T

T

F

F

T

T

F

F

T

T

F

T

T

In the above table, entries in column 6 and 7 are identical.
∴ Statement ∼ (p ∧ q) and ∼ p ∨ ∼ q are equivalent.